
1

Complete and Robust No-Fit Polygon Generation for the
Irregular Stock Cutting Problem

E. K. BURKE R. S. R. HELLIER G. KENDALL G. WHITWELL
ekb@cs.nott.ac.uk

rsh@cs.nott.ac.uk

gxk@cs.nott.ac.uk

gxw@cs.nott.ac.uk

(corresponding author)

University of Nottingham, School of Computer Science & IT, Jubilee Campus, Nottingham NG8 1BB, UK

Abstract

The no-fit polygon is a construct that can be used between pairs of shapes for fast and efficient handling of geometry

within irregular two-dimensional stock cutting problems. Previously, the no-fit polygon (NFP) has not been widely

applied because of the perception that it is difficult to implement and because of the lack of generic approaches that

can cope with all problem cases without specific case-by-case handling. This paper introduces a robust orbital method

for the creation of no-fit polygons which does not suffer from the typical problem cases found in the other approaches

from the literature. Furthermore, the algorithm only involves two simple geometric stages so it is easily understood

and implemented. We demonstrate how the approach handles known degenerate cases such as holes, interlocking

concavities and jigsaw type pieces and we give generation times for 32 irregular packing benchmark problems from

the literature, including real world datasets, to allow further comparison with existing and future approaches.

1. Introduction

The irregular two-dimensional variant of the cutting and packing problem impacts upon several important

manufacturing industries such as textiles, plastics, metal cutting and others. These problems usually consist of a

number of irregular pieces that are to be placed onto one or more sheets of material in the most efficient layout

possible, so that all pieces are assigned and do not overlap. Additionally, there are usually rotational constraints

enforced on the pieces due to the physical properties of the problem such as grain on the material, patterns on textiles

and the cutting technology being employed. Sometimes rotational constraints may be used for non-physical reasons

such as to restrict pieces to a finite set of rotations thus simplifying layout construction procedures and allowing for

faster solutions to be obtained. The two-dimensional stock cutting problem has been shown to be NP hard and is

therefore intrinsically difficult to solve (Garey and Johnson, 1979). There have been many different strategies for

producing solutions to the irregular stock cutting problem. These include linear programming approaches, heuristic

placement methods, metaheuristic guided search techniques and other novel approaches such as the iterative jostling

2

of pieces (Dowsland, Dowsland and Bennell, 1998). Survey papers can be found in (Dowsland and Dowsland, 1992;

Sweeney and Paternoster, 1992; Dyckhoff, 1990). However, the feature that connects all of the approaches is that

they are all required to cope with the geometry of the problem. This can be especially complicated when highly

irregular shapes are used which may include holes or concavities. The implementation of robust and efficient

geometry routines can be laborious and can often take considerably longer than the packing strategies themselves. In

particular, the geometry must handle all of the interactions between shapes such as detecting whether two shapes are

overlapping and calculating the translation distance required in a given direction so that the overlap is resolved. As

we show in the following section, although these tests can be implemented using trigonometric techniques, the no-fit

polygon represents a considerably more efficient solution.

Whilst the generation of the no-fit polygon is academically challenging, it is a ‘tool’ and not a ‘solution’ and

this is perhaps one of the reasons why there are many publications in the literature which state that the no-fit polygon

is used but which provide relatively little or no details on its implementation. In this paper we concentrate specifically

on the no-fit polygon and provide an overview of the previous techniques that have been used for its creation.

Furthermore, we describe and provide full implementation details for a new robust orbital approach that can cope with

the traditional problem cases that many other approaches cannot handle. Hopefully this will help in the further

dissemination of the benefits of using the no-fit polygon (as opposed to traditional trigonometry based approaches)

within both the industrial and the academic communities.

2. The No-Fit Polygon – An Overview

In this section we describe the functionality of the no-fit polygon and we compare it to the more traditional

trigonometric based overlap and intersection tests. We also give brief overviews of the many techniques that have

been used to generate no-fit polygons within the previous literature.

2.1 The No-Fit Polygon

The first application of no-fit polygon techniques within the field of cutting and packing was presented by Art (1966),

although the term “shape envelop” was used. It was ten years later that the term “no-fit polygon” was introduced by

Adamowicz and Albano who approached the irregular stock cutting problem by using no-fit polygons to pack shapes

together using their minimum enclosing rectangles (Adamowicz and Albano, 1976). The term “configuration space

obstacle” is often used to denote the NFP within the field of engineering and robot motion planning but the term has

also been used with respect to cutting and packing in (Cunninghame-Greene, 1989). The “hodograph” is often used to

3

describe the no-fit polygon within the mathematics community (Stoyan and Ponomarenko, 1976; Scheithauer and

Terno, 1993; Bennell, Dowsland and Dowsland, 2001). The main function of the no-fit polygon is to describe the

region in which two polygons intersect. The following example gives an overview of the NFP construct.

Given two polygons, A and B, the no-fit polygon can be found by tracing one shape around the boundary of

another. One of the polygons remains fixed in position and the other traverses around the fixed polygon’s edges

whilst ensuring that the polygons always touch but never intersect. Throughout this paper we adopt the convention of

the first polygon being fixed and the second being the traversing/orbiting polygon. Therefore, when polygon B traces

around the fixed polygon A, the resulting no-fit polygon is denoted by NFPAB. In order to create the NFPAB object we

must choose a reference point from B which will be traced as B moves around A. In our implementations we use the

first vertex, within the shape vertex list, as the reference point (see Figure 1). The reference point can be any arbitrary

point providing it follows the movements of the orbiting polygon. It is also important to maintain the relative position

of the reference point with respect to polygon B as this is required when using the NFP to test for overlap.

Figure 1. The no-fit polygon of two shapes A and B

Figure 2. Using the no-fit polygon to test for intersection between polygons A and B

A

NFPAB

B
REF POINT B

A
B

REF POINT B A

B

NFPAB NFPAB

REF POINT B

a) Intersection b) Touching c) No Intersection

B
A A

B
B
B

B B

B
B

B

B

B

NFPAB

REF POINT B

4

In order to test whether polygon B overlaps polygon A we use NFPAB and B’s reference point. If polygon B is

positioned so that its reference point is inside the polygon NFPAB then it overlaps with polygon A. If the reference

point is on the boundary of NFPAB then polygon B touches polygon A. Finally, if the reference point is outside of

NFPAB then polygons A and B do not overlap or touch (see figure 2). The no-fit polygon is used within the following

papers from the literature (Grinde and Calvalier, 1995; Ramkumar, 1996; Cheng and Rao, 1997; Dowsland, Dowsland

and Bennell, 1998; Milenkovic, 1999; Gomes and Oliveira, 2002; Dowsland, Vaid and Dowsland, 2002).

2.2 No-Fit Polygon vs. Standard Trigonometry Overlap Detection

Although the no-fit polygon is an excellent tool for conducting intersection tests between pairs of polygons, it has not

been widely applied for two-dimensional packing problems in both the literature and in real world manufacturing

industries. Undoubtedly this is due to the no-fit polygon’s complex implementation and the lack of available robust

algorithms. Instead, many intersection implementations use standard trigonometrical approaches which especially

occur in the case of packing software for real-world applications where it is important that distributed software is able

to handle all possible polygons without errors. However, whilst both approaches have the same overall effect, use of

the no-fit polygon can be several times quicker than even the most efficient trigonometrical routines. For example,

where we wish to attempt numerous iterations of the same layout problem, the pre-generation of no-fit polygons can

significantly reduce the total computation time. Over numerous iterations, trigonometric approaches are likely to

repeatedly detect and resolve the same overlapping shapes in repeated orientations and positions. Where a nesting

overlap resolution approach requires the calculation of all intersection points between two intersecting shapes the

benefits of a no-fit polygon approach are multiplied further as numerous intersection calculations are required for the

full detection of collision when the no-fit polygon method is not used. Therefore, by utilising no-fit polygons, we can

reduce the overlap detection problem (which is a major factor in the computational overhead of the nesting process) to

a significantly less expensive point inside polygon test (Dowsland, Vaid & Dowsland, 2002). In addition to this, when

utilising the overlap resolution technique used in Burke (Burke et al, 2004), where intersecting shapes are resolved

through the repeated resolution of intersecting edges in the y-axis direction, by utilising the no-fit polygon the

resolution technique is more efficient, resolving the y–axis overlap in one complete movement. Furthermore, the no-

fit polygon would also allow for the overlap to be resolved in any direction by casting out a ray from the relevant

reference point and finding the nearest intersection with the no-fit polygon boundary. In the following section, we

compare the geometrical procedures that are required to detect and resolve the overlap between two polygons using,

firstly, standard trigonometry and, secondly, using the NFP. Given a nesting method where we wish to detect all

5

points of intersection for polygons A and B (see figure 3), every edge is tested against every other edge leading to 42

tests to determine intersection status (given that polygon A has 7 edges and polygon B has 6 edges). Furthermore, if

we find no intersection, in order to eliminate the possibility of the polygons intersecting through their vertices, or one

polygon completely containing the other, we must perform a point inside test for all points on both shapes, requiring a

further 13 tests and therefore, in the worse case, a total of 55 tests.

Figure 3. Intersection testing with the no-fit polygon

These can be regarded as a large but unavoidable overhead for the detection of intersection between any two polygons

in a layout through trigonometric methods, which can only increase as we add an increasing number of polygons to

our problem. Whilst many searches can be attempted and fast intersection libraries can be developed, intersection

detection remains a considerable portion of the computational overhead inherent in the generation of packing

solutions. Additionally where we wish to develop numerous solutions using a search method these, often repeated,

calculations will have considerable impact on the overall computation time.

Now returning to figure 3, the no fit polygon of the two polygons, NFPAB, is also shown at some arbitrary

position in the problem space. In this case, the NFPAB has been generated using the proposed edge sliding technique

where polygon B traversed the edges on the polygon A and the NFP was formed by tracking the reference point, REF

B, of the traversing polygon. The coordinate at which the NFP has been created within the Cartesian space does not

affect the use of NFP based intersection detection because we can simply generate the correct test point (tp) with

respect to the NFP’s position using a simple calculation based on reference points: tp = REF NFPAB + REF B – REF A

– Offset, where Offset is the vector from the reference point of polygon A (the stationary polygon) to the reference

point of the no-fit polygon (REF NFPAB – REF A). The status of tp with respect to NFPAB can be calculated using a

ray-crossing algorithm described in O’Rourke (O’Rourke, 1998). If the point tp is found to be within NFPAB then the

polygons A and B are colliding with one another. Colliding includes both intersection and containment of one

polygon by another. If tp falls on the NFPAB then the polygons are known to be touching and if tp falls outside of

A

B

tp

y

x

REF B
REF A

NFPAB

REF NFPAB

6

NFPAB then the shapes are neither touching nor colliding. By calculating all of the no-fit polygons for all pairs of

polygons, we can save considerable computation time when performing multiple iteration nesting.

2.3 Approaches for No-Fit Polygon Construction

Here we review the main techniques that have previously been used for construction of no-fit polygons within the

literature. For each method we give a brief overview of the approach and discuss any benefits and drawbacks that

may occur from its usage.

2.3.1 Convex Shapes

The basic form of no-fit polygon generation occurs when both polygons are convex. Given two convex shapes, A and

B, the no-fit polygon is created by the following steps: i) Orientate shape A anticlockwise and shape B clockwise (see

figure 4a), ii) Translate all edges from A and B to a single point (see figure 4b), Concatenate these edges in

anticlockwise order to yield the no-fit polygon (see figure 4c).

Figure 4. No-fit polygon generation with convex shapes

Cuninghame-Green uses this approach to produce “configuration space obstacles” between pairs of convex polygons

which are then used for intersection tests during the packing of shapes (Cuninghame-Green, 1989). For instances

involving non-convex pieces, Cuninghame-Green firstly calculates the convex hull of each non-convex shape (the

minimal containing convex polygon) and then calculates no-fit polygons using the respective convex hulls.

The benefit of convex no-fit polygon generation is that it is simple and is extremely quick using a standard

sorting algorithm in combination with edge reordering through translation. The obvious disadvantage is that no-fit

polygons cannot be generated for non-convex shapes and the reduction to convex hulls results in concavity sections

being unavailable in packing and non-traversable in robot motion planning. As this can adversely affect solution

quality, other approaches are required.

2.3.2 Non-Convex Shapes

There have been many different approaches to producing no-fit polygons from non-convex shapes. These can be

placed into three general categories: decomposition, minkowski sums and orbital approaches.

a
b

c d

e A

f

g h

i
B

c

d
e

a

b
i

h

g
f

e

g

a h

b

i

c f
d

A

B

a) b) c)

NFPAB

7

1) Decomposition

The first approach is to decompose any non-convex shapes into sub-pieces that can be ‘managed’ more easily.

However, decomposition usually results in several sub-pieces and therefore several no-fit polygons must be created.

In order to conduct intersection testing, the no-fit polygons can remain decomposed or they can be recombined

through union operations. Where possible, a single no-fit polygon offers the fastest intersection computation times but

will require additional calculations to recombine constituent parts. This can be a computationally expensive and a

difficult undertaking if several subparts are present and this may be further complicated if holes are present. For

example, Agarwal, Flato and Halperin (2002) conducted an extensive investigation into different decomposition and

recombination operations with respect to constructing Minkowski sums of non-convex polygons. They conclude that

it is counterproductive to use optimal decompositions because the computation times to calculate them outweigh the

benefits achieved during recombination. The authors report that the recombination operations are the most costly and

give example execution times that range from a few seconds for shapes involving a small amount of concavities and

up to twenty minutes for highly irregular shapes. Avnaim and Boissonat (1988) discuss a decomposition

recombination approach based on linear segments. These are used to produce parallelograms which are recombined to

yield the NFP. The authors provide a mathematical proof to show that the approach can handle the general case and

further extend this to allow rotations. The algorithm has a time complexity of O(m3n3 log mn).

a) Convex Pieces

We have already discussed that no-fit polygon generation is trivial when convex shapes are involved. If shapes with

concavities can be divided into convex pieces, fast convex no-fit polygon generation techniques can be employed.

The simplification of geometrical intersection through the decomposition of non-convex shapes to convex pieces was

suggested and discussed in (Avnaim and Boissonnat, 1987) and (Cuninghame-Green, 1992). The main difficulties

with such an approach are the decomposition and recombination algorithms. There are many well-known approaches

that can be used for this including decompositions into triangular or convex pieces. Seidal suggests a fast polygon

triangulation algorithm which has complexity of an O(n log n) complexity (Seidal, 1991). Further implementation

details for triangulation can be found in (Amenta, 1997). However, for our purposes, the triangulation approaches

produce more sub-pieces than is necessary and will ultimately impact upon computation time within the generation

process. Unlike triangulation, which can be seen as a specialised cased of convex decomposition, generalised convex

decomposition algorithms aim to represent polygons with as few convex pieces. The two key approaches are

suboptimal decompositions, which has an O(n) complexity (Hertel and Mehlhorn, 1983), and optimal decomposition

8

which has an O(n3) complexity (Chazelle and Dobkin, 1985). Agarwal, Flato and Halperin (2002) state that it is

generally more efficient to use suboptimal decompositions because of the computational overhead inherent with

creating optimal decompositions but they also suggest that an alternative and possibly more efficient approach is to

perform convex covering instead. Once any irregular polygons have been decomposed into convex pieces, the no-fit

polygon may be generated by passing each convex piece of shape B around each convex piece of shape A. The

disadvantage with this approach is that the no-fit polygons of the convex pieces may cross and care must be taken

when recombining them to construct the no-fit polygon. Particular difficulty occurs if the original shapes contain

holes as it is unclear whether intersecting no-fit polygon subsections define holes or regions that can be discarded.

b) Star-Shaped Polygons

Li and Milenkovic decompose shapes into convex and star-shaped polygons. A star-shaped polygon has the property

that there exists at least one internal point, or ‘kernel point’, that can ‘see’ the entire boundary of the polygon. By

extending the concavity edges and elimination of invisible regions it is evident that the star-shaped polygon has a

region, Rkernel, that can be defined within which a kernel point can be placed to see the entire polygon boundary.

Conversely, this is not the case with the non-star-shaped polygon because no region can be defined in which to place a

kernel. Thus, star-shaped polygons are situated somewhere between convex and non-convex shapes in terms of

generality. Li and Milenkovic state that star-shaped polygons are ‘closed’ under Minkowski sum operations and

provide a proof that the Minkowski sum of two star-shaped polygons also yields a star-shaped polygon (Li and

Milenkovic, 1995). The authors do not state whether they recombine the no-fit polygon regions into one no-fit

polygon entity or whether they perform multiple no-fit polygon intersection tests during the layout generation stage.

c) Phi-Functions

An alternative and promising approach is presented by Stoyan et al and is based on the use of “phi-functions” (Stoyan

et al., 2001). Phi-functions define mathematical intersection relationships between pairs of standard or “primary”

objects such as rectangles, circles and convex polygons. Although phi-functions are not strictly a no-fit polygon based

approach, it is included because it has had very promising results. The authors further develop their work to enable

the definition of mathematical intersection relationships for non-convex polygons through the union, intersection and

complement of primary objects (Stoyan et al., 2002). The resultant intersection test between two shapes during layout

generation is performed through comparisons of phi-functions between all pairs of the primary objects that define

shape A and shape B. Phi functions have a secondary benefit in that they are based on distance functions between

primary objects and therefore can easily be used to find the distance between two complex objects.

9

2) Minkowski Sums

The no-fit polygon construct can be unified through the use of Minkowski sums (a form of vector addition) and was

first suggested by (Stoyan and Ponomarenko, 1977). The concept is as follows: given two arbitrary point sets, A and

B, the Minkowski sum of A and B is defined by the following: A ⊕ B = {a + b: a ∈ A, b ∈ B}

In order to produce no-fit polygons, we must use the Minkowski difference, A ⊕ −B. This corresponds to two

input polygons in opposing orientations and is easily shown through simple vector algebra (Bennell, Dowsland and

Dowsland, 2001). We can verify that this is the case using our simple convex only case (section 2.3.1) where we

place shape A in its anticlockwise orientation and shape B in its clockwise orientation. We can state that the method

of Cuninghame-Green, involving convex shapes only, is also using the Minkowski difference in its most basic form.

Whilst non-mathematical implementation details of such approaches are scarce, Ghosh and, subsequently,

Bennell provide excellent explanations and implementation details for no-fit region calculation. As such, we shall

refer the reader to their contributions (Ghosh, 1991; Ghosh, 1993; Bennell, Dowsland and Dowsland, 2001). The

main drawbacks of the approach is that it only works providing that the concavities of the two shapes do not interfere

or interlock (Ghosh, 1991; Ghosh, 1993). Bennell, Dowsland and Dowsland (2001) state that Ghosh’s approach

would cause a “cumbersome tangle of intersecting edges” which would be difficult to recombine to form the no-fit

polygon. They introduce a implementation that reduces the amount of ‘tangled edges’ and give implementation

details of the process. They also report fast generation times of around 0.3 seconds for each of five separate datasets

from the literature. However, they state that their approach cannot deal with internal holes as it is difficult to detect

which of the internal no-fit polygon edges can be discarded and which form the internal no-fit regions.

3) Orbital Sliding Approach

The orbital sliding approach is the main focus of this paper and involves using standard trigonometry to physically

slide one polygon around another. The no-fit polygon is defined by tracing the motion of a locus point of the sliding

polygon when orbiting. The first discussion and implementation of an orbiting approach for the generation of

‘envelopes’ is detailed in Mahadevan’s Ph.D thesis (Mahadevan, 1984). The key elements of Mahadevan’s approach

are: calculation of touching vertices and edges, determination of the translation vector and calculation of the

translation length. The calculation of intersecting edges is performed using the notion of D-functions (Konopasek,

1981). Mahadevan modifies the D-function test to also calculate touching points which is a necessity for both

Mahadevan’s algorithm and our new approach. This information is then used to select a translation vector based on

the touching edge. The translation vector is then projected through each vertex of the orbiting shape and then the

10

intersecting edge testing is used to calculate the translation distance. It is also important to project the translation

vector in the reverse direction of the stationary polygon. The orbiting shape is then translated along the translation

vector by the smallest distance (from projection and intersection tests). This ensures the two polygons never intersect

but always touch. The process continues until the orbiting polygon returns to its original starting position. We will

not describe Mahadevan’s approach in greater detail here because many of its features are also used within our new

orbital approach (section 3) and, where applicable, we compare against Mahadevan’s approach and state the

improvements within our new approach. The major disadvantage with Mahadevan’s algorithm is that it cannot

generate the full no-fit polygon for shapes involving holes or some concavities. The problem occurs when the orbiting

polygon can be placed inside a concavity of the stationary polygon but the concavity has a narrow entrance. In this

case, the orbiting polygon is too wide and will simply slide over the concavity. In section 4 we show how our new

orbital approach can generate no-fit polygons for all of the known degenerate cases.

3. The New No-Fit Polygon Construction Algorithm

We now describe our new approach for robust no-fit polygon generation through the use of orbital methods utilising

standard trigonometrical techniques. For the intersection calculations within our presented implementation, it is

important to use a robust geometry library. It is also beneficial to implement routines that are as fast and as close to

optimal as possible in order to promote fast no-fit polygon generation and packing algorithms. We have implemented

such a library. Although this can be very time-consuming and a difficult undertaking, a discussion of the required

algorithms can be found within most standard geometry and computer graphics texts such as (O’Rourke, 1998) and

several computational geometry forums on the internet. For practitioners who do not wish to develop such a library,

the geometry modules of the LEDA and CGAL libraries may provide better alternatives. It is beyond the scope of this

paper to discuss each geometry routine that is used throughout the implementation.

3.1 Overview

Our approach can be divided into two logical stages. Section 3.2 describes the procedure for the first of these where

one polygon slides around another to create the outer path of the no-fit polygon of the two shapes. This part follows

an approach that is logically similar to that of Mahadevan’s algorithm, although a modified implementation is

proposed. The second section introduces the notion and identification of starting positions that allow the algorithm to

find the remaining paths of the no-fit polygon (see section 3.3). These paths will be internal holes of the no-fit

polygon (i.e. contained by the outer path) and are not found using Mahadevan’s algorithm alone. For this section we

11

will assume that we have two anticlockwise oriented polygons, A and B, that exist somewhere within two-dimensional

space and we are required to produce the no-fit polygon NFPAB (orbiting polygon B around polygon A). The first

operation that must be performed is to translate polygon B so that it is touching, but not intersecting, polygon A. We

maintain the same approach as used by Mahadevan whereby polygon B is translated so that its largest y-coordinate is

placed at the lowest y-coordinate of the polygon, A (see figure 5).

Figure 5. Initial translation of the orbiting polygon to touch the stationary polygon

Using these two vertices for alignment guarantees that A and B will be non-intersecting and touching. The translation

that results in polygon B touching polygon A is shown in the formula [1]:

Trans B A = PtA(ymin) – PtB(ymax) [1]

In reality, any starting position may be used providing that polygons A and B are touching and non-intersecting. The

orbital approach can now commence to generate the outer path of the no-fit polygon in an anticlockwise direction.

3.2 Orbiting / Sliding

The main aim of the orbiting (or sliding) section of the algorithm is to detect the correct movements that B must make

to traverse around A in order to return to its original position. This is an iterative procedure with each translation step

creating an edge of the no-fit polygon. This can be further broken down into the following subparts which will be

discussed in turn: detection of touching edges, creation of potential translation vectors, finding a feasible franslation,

trimming the feasible translation and, finally, applying the feasible translation.

3.2.1 Detection of Touching Edges

The ability to correctly detect touching and intersecting edges is paramount to the success of our approach. This is

achieved by testing each edge of polygon A against each edge of polygon B. Each pair of edges that touch (one from

polygon A and one from polygon B) is stored along with the position of the touching vertex. Figure 6 shows the

resulting set of touching edge pairs. This is in contrast to the approach of Mahadevan who performs calculations

using all edges at a touching vertex. For example, in figure 6, Mahadevan would present edges a2, a3, b1 and b4 on

the same diagram and, in our experience, this makes the required calculations longwinded and difficult to explain.

A
B

PtA(ymin)

PtB(ymax)
Trans
B A A

B

12

Figure 6. Identification of touching edge pairs

3.2.2 Creation of Potential Translation Vectors

The vector with which polygon B must be translated to orbit polygon A must either be derived from an edge of

polygon A or from polygon B depending on the situation. Figure 7 shows an example of each case.

Figure 7. Translation vector: a) derived from edge a3, b) derived from edge b1

Note that in the second case (figure 7b), because polygon B slides along one of its own edges, the translation vector is

found by reversing the edge. This is further examined through the relative movement of polygon A with respect to B.

Polygon A is relatively moved along the edge b1. In reality, polygon A must remain fixed and B must be translated

and therefore, the translation vector is reversed in this situation. We can obtain the set of potential translation vectors

by using the touching edge pairs. There are three possibilities: i) both edges touch at a vertex, ii) a vertex of orbiting

edge touches the middle of the stationary edge, or iii) a vertex of the stationary edge touches the middle of the orbiting

edge. These cases are depicted in figure 8.

Figure 8. Touching edge-pair types

a

b

a

b

a

b

iii)i) ii)

A

B
b1

b2
b3

b4

a1

a2 a3

a4

a5

a6
a7

A

B
b1

b2
b3

b4

a1

a2 a3

a4

a5

a6
a7

A

B

b2
b3

b4

a1

a2

a4

a5

a6
a7

A
B

b1

b2
b3

b4

a1

a2 a3

a4

a5

a6
a7

b)a)

A

B
b1

b2
b3

b4

a1

a2 a3

a4

a5

a6
a7 a2

b1

a2

b4

a3
b1

a3

b4

13

Each pair of touching edges yields one potential translation vector. In case (ii), the translation vector is simply defined

using the point at which the two edges touch and the stationary edge’s end vertex. In case (iii), we use a similar

process except we use the end vertex of the orbiting edge and we also reverse the vector direction. Case (i) requires

the correct identification of whether the potential translation vector is derived from the stationary or orbiting edge.

This can be identified by the following set of rules based on the touching vertices and a test for whether the orbiting

edge, b, is left or right of the stationary edge, a. Table 1 shows the different possibilities and the edge from which a

potential translation vector is derived under each circumstance.

Stationary Orbiting

1 Start Start Left Orbiting Edge

2 Start Start Right Stationary Edge

3 Start End Left -

4 Start End Right Stationary Edge

5 End Start Left -

6 End Start Right Orbiting Edge

7 End End -

8 Parallel Either Edge

Touching Edge Vertex Relative Position of the
Orbiting Edge to the

Stationary Edge

Translation Vector
Derived From

Case

Table 1. Deriving the potential translation when both edges touch at vertices

We shall now clarify why some potential translations can be eliminated in certain cases of the table (an ‘-‘ entry in the

table indicates that no translation is derived). Recall that when a translation is derived from an edge, the resultant

vector is defined by touching point end vertex (and then the vector is reversed for an orbiting edge). This allows us

to eliminate case 7 of the table because both the stationary and orbiting edges touch on the end vertices and this would

yield a null translation vector. In cases 3 and 4, the orbiting edge touches at its end vertex thus a translation cannot be

derived from the orbiting edge. In cases 5 and 6, the stationary edge cannot be used as it would produce a null vector.

As an example, we show each of the cases using two polygons that touch at two separate places (see figure 9).

1 (a3,b3) b3

2 (a1,b4) a1

3 (a3,b2) -
4 (a1,b3) a1

5 (a5,b4) -
6 (a2,b3) b3

7 (a2,b2) , (a5,b3) -

Translation Vector
Derived FromCase Edges

Figure 9. Two polygons touching at two separate positions and vertex-vertex touch cases

In cases 3 and 5, no translation can be derived because the edge of the orbiting polygon is to the left of the edge from

the stationary polygon. For example, edges a3 and b2 touch on their start and end vertices respectively. As we

produce a null translation using edge b2 (due to touching with the end vertex), the only possibility is to derive a

A
B a1

a2

a3

a4

a5

b3

b1

b2

b4

14

translation vector from the stationary edge, a3. However, edge b2 is left of edge a3 and, if this translation vector were

used, edge b2 would slide along the inside of edge a3. Therefore, the positional “left test” eliminates the translations

whereby polygons would slide along the inside of an edge rather than the outside of the edge. Where edges are

parallel, either the stationary or the orbiting edge may be used.

3.2.3 Finding a Feasible Translation Vector

Once the potential translation vectors have been produced, we next select a translation vector that does not result in an

immediate intersection. For example, on figure 9 we have generated two potential translation vectors, a1 and -b3. It

can be seen that the orbiting polygon B must be translated using vector -b3 in order to move anticlockwise around

polygon A. If, instead, we were to translate polygon B along vector a1, this would result in an immediate intersection

between edges a2 and b3 (and also a3 and b3). Once again the set of touching edge-pairs, generated from section 3.2.1,

contains all of the information needed to determine a feasible translation vector. The process here is simplified due to

our proposed representation of touching edges and involves taking each of the potential translation vectors in turn,

identified in section 3.2.2, and placing them on the touching position at each touching edge-pair. We can define

positional relationships between the touching edges of the stationary and orbiting polygons based on the union of

left/right regions that indicate whether a particular potential translation will be suitable for those edges. For a potential

translation vector to be identified as feasible, it must be suitable for every pair of touching edges. Figure 10 shows

some examples of touching edge-pairs and the angular direction at the touch point (given by the circular arcs) for

which edge b can move without intersecting with edge a.

Figure 10. Identifying the feasible angular range of translations (indicated by an arc)

For the sake of brevity, we have not listed all possibilities that can occur (the examples in figure 10 provide enough

information to derive the omitted relationships). In figure 9, we calculated two potential translation vectors, –b3 and

a1, for two touching polygons. Figure 11 demonstrates how the approach eliminates translation vector a1 (we have

omitted the edge-pairs involving edge a1 for brevity but these will be feasible translations because the translation

vector is also a1). Once a potential translation fails on one such test, the translation is infeasible and it is eliminated.

a a a a a a

b b b b b b

aright
∪

bright

aright
∪

bleft

aleft
∪

bright

aleft
∪

bleft

aright

bleft

15

a3

a2

a4
a5

a6

a7a9
a8

a12

a10
a11

a13

a14

a15

a16

a1

b1

b2

b3

b4

Figure 11. Elimination of potential translation vector, a1

At this stage we have found one (or more) feasible translation vectors. Usually there will only be one translation

vector but several may be present under the special circumstances that are illustrated in figure 12 (an actual screenshot

taken from our implementation). The centre of the orbiting square has been set as the reference point for clarity.

Figure 12. Two polygons involving exactly fitting ‘passageways’

This introduces another important aspect of our algorithm; we must maintain the edge that was used to generate the

previous translation vector. When several feasible translation vectors are present, we choose the edge that is nearest

(in edge order) to the previous move. Therefore, returning to figure 12, the square enters the passageway using edge

a3 instead of sliding straight over the opening using edge a14. Then, after sliding along into the centre of the stationary

polygon, the square has four feasible translation vectors derived from edges a4, a7, a10 and a13. However, the

translation vector derived from edge a4 will be used because the edge that was used previously was a3. This is another

improvement that we have made to Mahadevan’s approach, significantly improving the generality of the approach.

3.2.4 Trimming the Feasible Translation Vector

The last step before we can translate polygon B is to trim the translation vector. This is important because there may

be other edges that can interfere with the translation of the orbiting polygon. Figure 13a provides an example whereby

a3

b3

a2

b3

A
B a1

a2

a3

a4

a5

b3

b1

b2

b4

Transa1 Transa1
 Infeasible Edge

Translations

a2
b2 a5

b3

a5 b4

Transa1

Transa1Transa1 a3

b2

Transa1

Feasible Edge
Translations

16

applying the entire translation vector results in the two shapes intersecting. In order to prevent the orbiting polygon

entering the body of the stationary polygon, the feasible translation, a7, must be trimmed to edge a1 (see figure 13b).

Figure 13. A translation vector that requires ‘trimming’ to avoid intersection

In order to find the correct non-intersecting translation we project the translation vector at each of the vertices of

polygon B and test it for intersection with all edges of polygon A. This ensures that we correctly identify the vertices

of polygon B that will cross into polygon A and reduce the translation distance accordingly using formula [2].

New Translation = IntersectionPt – TranslationStartPt [2]

We must also project the translation vector back from all vertices of polygon A (by translating the end vertex of the

translation vector onto each vertex) and perform intersection testing with all edges of polygon B to test if any will

cross into polygon B. This is depicted in figure 14 using the same example but a different orbiting polygon.

Figure 14. Trimming with projections from polygon A

Once again, if there is an intersection, we can reduce the translation distance to reflect this using formula [3].

New Translation = TranslationEndPt – IntersectionPt [3]

Our approach is fundamentally the same as used by Mahadevan except that we trim the translation vector at the time

of intersection whereas Mahadevan keeps the translation vector the same but stores the minimal intersection distance

and trims once after all projections have been completed. As our algorithm trims at every intersection, the translation

vector becomes shorter throughout the testing process which can reduce the number of intersections that occur due to

fast elimination tests through the use of bounding boxes which are much faster than standard line intersections. The

approach of Mahadevan may need to calculate several more full intersection tests because the entire translation vector

is used at each projection and could potentially require more computation.

A A b2 b3 A A

b)a)

B
b1

b2
b3

B
b1

b2 b3

B
b1

b2b3 B
b1

A
B

A B
a1

a2 a3

a4

a5
a6

a7

a1

a2a3

a4

a5
a6

a7
A

B
A B

a1

a2a3

a4

a5
a6

a7

a1

a2a3

a4

a5
a6

a7

b)a)

17

3.2.5 Applying the Feasible Translation Vector

The final step is to append the trimmed translation vector to the end of the partial no-fit polygon created so far and

polygon B is translated by the trimmed translation vector. This will move the polygon to the next ‘decision’ point and

the process can restart from the detection of touching edges (section 3.2.1). The only additional check to this process

is that we must perform a test to detect if the reference point of polygon B has returned to its initial starting position.

3.3 Start Points

In section 3.2, we identified an approach for the orbiting of one polygon around another using edge comparisons and

edge sliding. The overall effect of the approach is similar to the proposed algorithm of Mahadevan. However, some

improvements have been proposed that result in the procedure requiring less computation and which enable the

approach to be explained more easily. Therefore our approach thus far has some of the same limitations that previous

orbital implementations have suffered such as the inability to generate complete no-fit polygons for shapes involving

interlocking concavities, jigsaw pieces or holes (see section 4). Figure 15a shows two polygons for which the sliding

algorithm alone does not produce the complete no-fit polygon. The polygons have concavities that can interlock with

each other to create a further no-fit polygon region but this is never found because of the narrow entrance to the

stationary polygon’s concavity (see figure 15b). Another approach is needed to identify such possibilities.

Figure 15. Interlocking concavities: a) polygons, b) no-fit polygon using sliding alone, c) the complete no-fit polygon

In this section we describe an approach based on the identification of feasible touching but non-intersecting start

positions with which the previously described sliding technique can be employed to generate the remaining inner

loops of the no-fit polygon construct. For example, if polygon B can be placed in the location shown in figure 15c,

then the sliding algorithm can be employed to generate the internal no-fit polygon region. Feasible starting positions

are found through a modification to the approach described in section 3.2 and once again the process involves sliding.

However, we are not interested in sliding to trace the no-fit polygon but to resolve edge intersections whilst translating

along a particular edge vector. In order to explain the process we will examine an example of finding the start

positions along one edge of polygon A. This process can then easily be reproduced for each edge of polygon A and

b)a) c)a1

a2

a3

a4
a5 a6

a7 a8
a9

a1

a2

a3

a4

a5a6

a7
a8

a9

a1

a2

a3
a4

a5 a6

a7 a8
a9 A

B

A A

B B

18

polygon B to create all feasible starting positions to allow polygon B to orbit around polygon A in order to create the

entire no-fit polygon. Given an edge, e, of polygon A, we can detect the potential starting positions of an orbiting

polygon B along e. The process involves translating polygon B such that each of its vertices, in turn, are aligned to

the start vertex of e. For each position we perform the following steps. If the polygons do not intersect in this

position, then this is noted as a feasible start position for the two polygons. If polygon B intersects with polygon A

then we must perform further testing and ultimately employ edge sliding to traverse along edge e until a non-

intersecting position is found or the end of the edge is reached. In such an instance, the first test involves examining

whether the two connected edges of polygon B (joined at the touching vertex) that are both right or parallel to the edge

e. If either of polygon B’s connected edges are left of e then they will translate on the inside of polygon A and can be

eliminated immediately as they will never yield a feasible starting position when sliding along vector e.

Figure 16. Vertex alignment of polygon B to polygon A using edge a5: a) invalid alignment, b) valid alignment

Figure 16a shows an example of where the connected edge pair, b3 and b4, are eliminated from sliding along a5

because b4 is left of a5 (note that this will not be eliminated when using edge b4 of the polygon B and connected edges

a4 and a5 of polygon A). Figure 16b shows an example of where both connected edges, b1 and b2, are right of edge a5.

Now, assuming both connected edges are right of edge e and polygons A and B intersect we can attempt to resolve the

overlap by translating the orbiting polygon along the translation vector defined by e. As with the previous section we

can now employ trimming to this vector (the procedure is identical). The resultant translation vector can then be

applied to slide polygon B along edge e and then another intersection test is performed. If the two polygons still

intersect then the process repeats with the translation vector derived from the touching point to the end vertex of edge

e. If the intersection has been resolved then the reference point of polygon B is a potential start position. If the

entirety of edge e is traversed and there is still an intersection then no feasible starting position can be found along

edge e and the aligned vertex / connected edges of polygon B. The next vertex of polygon B is then considered and so

on until all edge vertex possibilities have been examined. Note it is also important to examine the edges of polygon B

a2

a3

a4
a5

a6

a7
a8

a9 A

a1

B b1

b2
b3

b4
b5

b6 a2

a3

a4
a5

a6

a7

a8

a9 A

a1

B
b1

b2
b3

b4
b5

b6

b4

b3

a5

b2b1

a5

b)a)

19

with the vertices from polygon A but as this is an identical procedure, this will not be discussed. Figure 17 shows this

process on the example presented in figure 17b. When aligned using a5 and the vertex connecting edges b1 and b2, the

polygons are initially intersecting so we need to resolve the intersection along the vector derived from edge a5.

Figure 17. Start point generation process

Figure 17a shows the trimming process and identification of the closest intersection point, Pt. Polygon B is then

translated by the trimmed translation vector. The resulting position is shown in figure 17b. The polygons are still

intersecting so the procedure must repeat. The translation vector is calculated from the touching point to the end

vertex of edge a5 and is then trimmed as shown in figure 17c (only the important trim intersection is shown). After

applying this translation to polygon B, the polygons are no longer intersecting and therefore a feasible start point has

been found and the standard orbital approach can be employed once more to generate the no-fit polygon loop. A

procedure that we include in our implementation is that we calculate the outer no-fit polygon loop using the approach

in section 3.2 and then we apply the starting position procedure on the untraversed / unflagged edges from both

polygon A and polygon B in turn. During the process, as soon as a feasible start position is found, we calculate the

inner loop of the no-fit polygon that is derived from it (flagging edges as they are traversed as before). This ensures

that the algorithm is fast because more edges become flagged as new no-fit polygon loops are produced, thus reducing

the computational requirements for generating new feasible start positions. The procedure repeats until all edges have

been seen or no more feasible start positions are available and the complete no-fit polygon is returned.

a2

a3

a4
a5 a6

a7

a9 A

a1

b1 b2
b3 b4

b5

b6
BPt

a2

a3

a4

a5 a6

a7

a9A

a1

b1 b2

b3 b4

b5

b6

B

a2

a3

a4

a5
a6

a7

a9A

a1

b1 b2

b3 b4
b5

b6

B

a2

a3

a4

a5 a6

a7

a9A

a1

b1 b2
b3 b4

b5

b6

B
a8 a8 a8 a8 Pt

b) a) d) c)

20

4. Problem Cases

In this section we discuss each of the problem cases that cause difficulties with other methods and show why our

approach is able to handle them without specific case-by-case implementations. In each figure of this section we

identify the stationary and orbiting polygons in dark and light grey shading respectively and we show the reference

point of the orbiting polygon by a black dot. This is used to trace the loops of the no-fit polygon (which we number).

We present the data for these problem cases within the online companion for this paper.

4.1 Interlocking Concavities

The interlocking of concavities is a typical problem case for the previous orbital sliding approaches in the literature

such as (Mahadevan, 1984). Figure 18 shows a screenshot of our implementation where we generate the complete no-

fit polygon of identical shapes with one rotated through 180°. The shapes in these orientations involve many different

interactions of the concavities and, therefore, multiple feasible start points. The no-fit polygon of these two shapes

results in six loops within the no-fit polygon (one outer loop, 1, and five internal loops, 2-6).

 Figure 18. Multiple interlocking positions Figure 19. Exact fit sliding through a “passageway”

4.2 Exact Fit: Sliding

The next case involves sliding through exactly fitting “passageways” which cannot be handled by either the

Minkowski sum approach of (Bennell, Dowsland and Dowsland, 2001) or the orbital approach given in (Mahadevan,

1984). We propose an extension to Mahadevan’s algorithm that can deal with such problems through the maintenance

of the previously traversed edge and, thus, enabling consecutive edges of the stationary polygon to be used in the next

translation iteration (see Figure 19). We previously discussed another example of this case in figure 12.

1

2

3 4 5

6
1

21

4.3 Exact Fit: Jigsaw Pieces

The problem case involving jigsaw pieces (also called “lock-and-key”) that link exactly together is another form of the

interlocking concavity case outlined in 4.1. However, the distinguishing feature of jigsaw pieces is that they fit

together with no movement, thus creating a singular feasible point within the no-fit polygon (rather than an internal

loop in the interlocking concavity case). In our approach, this position is found by the generation of feasible starting

positions. Of course, the algorithm will still try to slide the orbiting polygon along edges but, in this case, there is no

feasible translation vector therefore distinguishing that the position is just a singular feasible point location (see figure

20). Most of the previous approaches have suffered from such degeneracy including: the Minkowski sum approach

where no boundary exists to identify lock-and-key positions within the no-fit polygon, convex decomposition whereby

it is not possible to find such positions through recombination alone and the sliding algorithm of Mahadevan which

suffers from the same difficulties as with interlocking concavities (see section 4.1).

Figure 20. Jigsaw pieces: a) outer no-fit polygon loop, b) singular feasible internal position

4.4 Holes

There have been few approaches within the literature that can operate effectively on shapes containing holes. This

could be due to the difficulty of the generation process for no-fit polygons involving holes. However, through the

detection of feasible starting positions, the no-fit polygon can be generated easily and, more importantly, completely.

Singular
Feasible

Point

1

2

1

2

a) b)

22

Figure 21. No-fit polygon of two polygons, one of which involves multiple holes

Figure 21 shows an example involving a shape with two holes and a shape that can be placed within several distinct

regions of the holes. The figure shows a mixture cases involving holes and interlocking concavities: loop 1 is the

outer no-fit polygon loop, loops 2,3,5,6,7 are all hole cases, and loops 4 and 8 are cases whereby the concavity of the

smaller orbiting shape interacts with the narrow gaps within the larger hole of the stationary shape. Also, convex

decompositions can result in a larger number of pieces and become more difficult with the introduction of holes.

Therefore union or recombination is also compromised due to the larger number of intersecting sub-no-fit polygon

elements that need to be untangled. The phi-function approach of Stoyan could deal with many of the degeneracies

through the resolution of primary objects. However, this approach will ultimately impact on the efficiency of

intersection testing as many separate tests must be performed (especially with very complex shapes). Previous orbital

approaches have only produced the outer no-fit polygon loop and Minkowski sum approaches can become difficult

due to the untangling of edges. The authors are unaware of any previous no-fit polygon generation methods that have

specifically presented no-fit polygon constructs for shapes involving such degeneracies.

5. Generation Times on the Benchmark Problems

In order to demonstrate the speed and capabilities of our new no-fit polygon procedure, we report the generation times

for 32 benchmark problems which we have gathered from the literature (this set of benchmarks is all of those of which

we are aware). These datasets can be found on the EURO Special Interest Group on Cutting and Packing (ESICUP)

website1. For each problem we report the total generation time and number of no-fit polygons generated per second

(see table 2). The “Logical Total Number of Shapes” (column E) is found by E = B * D and the “Total Number of

1 http://www.apdio.pt/sicup

1

2

4

3

5

6
7

8

23

NFPs” (column F) is calculated by F = E2 (i.e. we calculate the NFP for every logical shape against every other

logical shape). All experiments have been conducted on a Pentium 4 2GHz processor with 256MB RAM.

Table 2 shows that the no-fit polygon constructs can be generated within reasonable time frames on most of the

benchmark data. Typically the algorithm can generate about 1000 no-fit polygons per second although this can vary

drastically depending on the number of line segments in each problem. For example, the two problems with the

lowest no-fit polygons generated per second, “Swim” and “Profiles9”, involve pieces with many line segments (up to

67) due to approximation of arcs and, further to this, “Profiles9” contains several shapes with holes (see figure 22).

Figure 22. A selection of pieces and no-fit polygons from the “Profiles 9” (letters) and “Swim” datasets

A B C D E F G H

Dataset
Number of
Different
Shapes

Rotational
Constraints

Number of
Rotations
per Shape

Logical Total
Number of

Shapes

Total Number
of NFPs

Total
Generation

Time (s)

NFPs Per
Second

Albano180 8 180 2 16 256 0.32 800
Albano90 8 90 4 32 1024 0.71 1442

Blasz1 7 180 2 14 196 0.21 933
Blasz2 4 90 4 16 256 0.19 1347
Dagli 10 90 4 40 1600 0.93 1720

Dighe1 16 90 4 64 4096 1.28 3200
Dighe2 10 90 4 40 1600 0.62 2581

Fu 12 90 4 48 2304 0.52 4431
Jakobs1 25 90 4 100 10000 5.57 1795
Jakobs2 25 90 4 100 10000 5.07 1972

Mao 9 90 4 36 1296 1.41 919
Marques 8 90 4 32 1024 0.79 1296

Poly1a 15 90 4 60 3600 1.37 2628
Poly2a 15 90 4 60 3600 1.37 2628
Poly3a 15 90 4 60 3600 1.37 2628
Poly4a 15 90 4 60 3600 1.37 2628
Poly5a 15 90 4 60 3600 1.37 2628
Poly2b 30 90 4 120 14400 7.54 1910
Poly3b 45 90 4 180 32400 27.14 1194
Poly4b 60 90 4 240 57600 68.45 841
Poly5b 75 90 4 300 90000 141.90 634
Shapes 4 90 4 16 256 0.38 674
Shapes0 4 0 1 4 16 0.11 145
Shapes1 4 180 2 8 64 0.19 337

Shirts 8 180 2 16 256 0.33 776
Swim 10 180 2 20 400 6.08 66

Trousers 17 180 2 34 1156 0.73 1584
Profiles6 9 90 4 36 1296 0.86 1507
Profiles7 9 90 4 36 1296 0.58 2234
Profiles8 9 90 4 36 1296 0.56 2314
Profiles9 16 90 4 64 4096 44.30 92
Profiles10 13 0 1 13 169 0.55 307

Table 2. No-fit polygon generation times for 32 datasets of the literature

24

The slowest overall generation times occur within the Poly4b and Poly5b problems and are simply due to the large

number of no-fit polygons to generate. Whilst the majority of the literature datasets do not contain any degenerate

cases, the “Profiles6” and “Profiles9” datasets do contain several of the degenerate cases that we have identified (holes

and interlocking cavities). As mentioned in section 2.3.2, other reported generation times for available benchmark

problems of the literature can be found in (Bennell, Dowsland and Dowsland, 2001). Table 3 shows a comparison of

the generation times of our new orbital approach to the Minkowski based approach of Bennell, Dowsland and

Dowsland using a DEC Alpha 3000/400. We set each problem to use 0° rotations for comparative purposes (polygons

in their drawn orientations) as these were the rotational constraints used in (Bennell, Dowsland and Dowsland, 2001).

Minkowski Approach
(Bennell et al, 2002) [DEC

Alpha 3000/400]

Orbital Approach
(Presented) [Pentium 4

2GHz]

DS1 0.32 0.23
DS2 0.22 0.04

DS3 (Shirts) 0.23 0.17
DS4 (Shapes0) 0.38 0.11
DS5 (Blasz1) 0.36 0.13

Dataset
(0° rotation only)

Total Generation Times (seconds)

Table 3. Comparison of generation times of the Minkowski approach of Bennell, Dowsland and Dowsland (2001)

with the presented orbital approach on 5 literature datasets.

Table 3 shows that the new approach generates the no-fit polygons quicker than the Minkowski sum approach for all

of the five datasets. Whilst this comparison is unfair due to the difference in computing power available to the two

approaches, it does show that the approach proposed in this paper can generate no-fit polygons very quickly with

execution times that are consistent with other published approaches.

We have demonstrated that, for the problems taken from the literature (including several datasets from the

textiles and metal cutting industries), we are able to quickly and robustly generate all of the no-fit polygons. Whilst

very large problems may require a few minutes to generate all of no-fit polygons, such as the Poly4b and Poly5b test

problems, for repeated automatic nesting it is likely that we will more than recover this overhead by being able to use

the faster no-fit polygon based intersection testing.

6. Summary

In this paper we have reviewed the main techniques that have been used for no-fit polygon generation within the

literature and shown that it is an important construct that can be used for the development of faster automated packing

algorithms as opposed to the traditional trigonometric based approaches. A complete and robust implementation of

the orbital method of the no-fit polygon has been presented. This approach can deal with degenerate cases that the

25

previous methods cannot resolve easily. Furthermore, we show that the execution times required to produce the no-fit

polygons on the available benchmark problems from the literature are reasonable and that they are consistent with the

approach of Bennell, Dowsland and Dowsland (2001). As far as the authors are aware, not only is this the first time

that a full implementation of an orbital no-fit polygon generation procedure has been proposed for publication within

the literature but also the first time that such an approach has been rigorously investigated for robustness with the

known degenerate cases and has provided computational results on such a wide range of existing benchmark data.

References

Adamowicz, M., Albano, A., 1976, Nesting two dimensional shapes in rectangular modules, Computer Aided Design,
Vol. 8, No. 1, 27-33.

Amenta, N., 1997, Computational geometry software, in J. E. Goodman & J. O’Rouke (eds.), Handbook of Discrete
and Computational Geometry, CRC Press LLC, Boca Raton, Chapter 52, 951-960.

Art, R. C., 1966, An approach to the two dimensional irregular cutting stock problem, IBM Cambridge Scientific
Centre, Report 36-Y08.

Agarwal, P. K., Flato, E., Halperin, D., 2002, Polygon decomposition for efficient construction of Minkowski sums,
Computational Geometry Theory and Applications, 21, 39-61.

Avnaim, F., Boissonnat, J. D., 1987, Simultaneous containment of several polygons, Proceedings of the 3rd Annual
ACM Symposium on Computational Geometry, 242-250.

Avnaim, F., Boissonnat, J. D., 1988, Polygon Placement under Translation and Rotation, Lecture notes in Computer
Science, 294, 323-333.

Bennell, J. A., Dowsland, K. A., 1999, A tabu thresholding implementation for the irregular stock cutting problem,
International Journal of Production Research, 37, 18, 4259-4275.

Bennell, J. A., Dowsland, K. A., Dowsland, W. B., 2001, The irregular cutting-stock problem – a new procedure for
deriving the no-fit polygon, Computers & Operations Research, Vol. 28, 271-287.

Burke, E. K., Hellier, R. S. R., Kendall, G., Whitwell, G., 2004, A New Bottom-Left-Fill Algorithm for the Two-
Dimensional Irregular Packing Problem, Operations Research (accepted for publication).

Chazelle, B., Dobkin, D. P., 1985, Optimal convex decompositions, in G. T. Toussaint (ed.), Computational
Geometry, North-Holland, Amsterdam, 63-133.

Cheng, S. K., Rao, K. P., 1997, Quick and Precise Clustering of Arbitrarily Shaped Flat Patterns Based on Stringy
Effect, Computers and Industrial Engineering, Vol. 33, Nos 3-4, 485-488.

Cuninghame-Green, R., 1989, Geometry, Shoemaking and the milk tray problem, New Scientist 12th August 1989,
No. 1677, 50-53.

Cuninghame-Green, R., 1992, Cut out waste!, O.R. Insight, 5, 3, 4-7.
Dowsland, K. A., Dowsland, W. B., Bennell, J. A., 1998, Jostling for position: local improvement for irregular cutting

patterns, Journal of the Operational Research Society, Vol. 49, 647-658.
Dowsland, K. A., Vaid, S., Dowsland, W. B., 2002, An algorithm for polygon placement using a bottom-left strategy,

European Journal of Operational Research, Vol. 141, 371-381.
Garey, M. R., Johnson, D. S., 1979, “Computers and Intractability: A guide to the Theory of NP-Completeness”, W.

H. Freeman and Company, San Francisco.
Ghosh, P. K., 1993, A unified computational framework for minkowski operations, Computers and Graphics,17, 4,

357-378.
Gomes, A. M. Oliveira, J. F., 2002, A 2-exchange heurstic for nesting problems, European Journal of Operational

Research, 141, 359-370.
Grinde, R. B. and Cavalier, T. M., 1995, A new algorithm for the minimal-area convex enclosure problem, European

Journal of Operations Research, 84, 522-538.

26

Hertel, S., Mehlhorn, K., 1983, Fast triangulation of simple polygons, Proceedings of the 4th International Conference,
in Foundations of Computational Theory, Lecture Notes in Computer Science, 158, Springer-Verlag, Berlin,
207-218.

Konopasek, M., 1981, Mathematical treatment of some apparel marking and cutting problems, US Department of
Commerce Report, 99-26-90857-10.

Li, Z., Milenkovic, V. J., 1995, Compaction and Separation algorithms for non-convex polygons and their
applications, European Journal of Operational Research, Vol. 84, 539-561.

Mahadevan, A., 1984, Optimisation in computer aided pattern packing, Ph.D. thesis, North Carolina State University.
Milenkovic, V. J., 1999, Rotational polygon containment and minimum enclosure using only robust 2D constructions,

Computational Geometry, Vol. 13, 3-19.
O’Rourke, J., 1998, Computational Geometry in C – 2nd Ed, Cambridge University Press, ISBN 0-521-64976-5.
Ramkumar, G. D., 1996, An algorithm to compute the minkowski sum outer-face of two simple polygons,

Proceedings of the 12th Annual Symposium on Computational Geometry, 234-241.
Scheithauer, G., Terno, J., 1993, Modeling of packing problems, Optimization, 28, 63-84.
Seidel, R., 1991, A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and

for triangulating polygons, Computational Geometry Theory and Applications, 1, 51-64.
Stoyan, Y. and Ponomarenko, L. D., 1977, Minkowski sum and hodograph of the dense placement vector function,

SER. A10, Technical Report, SER. A10, Reports of the SSR Academy of Science.
Stoyan, Y., Terno, J., Scheithauer, G., Gil, N., and Romanova, T., 2001, Phi-functions for primary 2D-objects, Studia

Informatica Universalis, 2, 1, 1-32.
Stoyan, Y., Scheithauer, G., Gil, N., and Romanova, T., 2002, Phi-functions for complex 2D-objects, Technical

Report, MATH-NM-2-2002, April 2002, Technische Universitat Dresden.

