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Abstract 
 
The no-fit polygon is a construct that can be used between pairs of shapes for fast and efficient handling of geometry 

within irregular two-dimensional stock cutting problems.  Previously, the no-fit polygon (NFP) has not been widely 

applied because of the perception that it is difficult to implement and because of the lack of generic approaches that 

can cope with all problem cases without specific case-by-case handling.  This paper introduces a robust orbital method 

for the creation of no-fit polygons which does not suffer from the typical problem cases found in the other approaches 

from the literature.  Furthermore, the algorithm only involves two simple geometric stages so it is easily understood 

and implemented.  We demonstrate how the approach handles known degenerate cases such as holes, interlocking 

concavities and jigsaw type pieces and we give generation times for 32 irregular packing benchmark problems from 

the literature, including real world datasets, to allow further comparison with existing and future approaches. 

1. Introduction 

The irregular two-dimensional variant of the cutting and packing problem impacts upon several important 

manufacturing industries such as textiles, plastics, metal cutting and others.  These problems usually consist of a 

number of irregular pieces that are to be placed onto one or more sheets of material in the most efficient layout 

possible, so that all pieces are assigned and do not overlap.  Additionally, there are usually rotational constraints 

enforced on the pieces due to the physical properties of the problem such as grain on the material, patterns on textiles 

and the cutting technology being employed.  Sometimes rotational constraints may be used for non-physical reasons 

such as to restrict pieces to a finite set of rotations thus simplifying layout construction procedures and allowing for 

faster solutions to be obtained.  The two-dimensional stock cutting problem has been shown to be NP hard and is 

therefore intrinsically difficult to solve (Garey and Johnson, 1979).  There have been many different strategies for 

producing solutions to the irregular stock cutting problem.  These include linear programming approaches, heuristic 

placement methods, metaheuristic guided search techniques and other novel approaches such as the iterative jostling 
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of pieces (Dowsland, Dowsland and Bennell, 1998).  Survey papers can be found in (Dowsland and Dowsland, 1992; 

Sweeney and Paternoster, 1992; Dyckhoff, 1990).  However, the feature that connects all of the approaches is that 

they are all required to cope with the geometry of the problem.  This can be especially complicated when highly 

irregular shapes are used which may include holes or concavities.  The implementation of robust and efficient 

geometry routines can be laborious and can often take considerably longer than the packing strategies themselves.  In 

particular, the geometry must handle all of the interactions between shapes such as detecting whether two shapes are 

overlapping and calculating the translation distance required in a given direction so that the overlap is resolved.  As 

we show in the following section, although these tests can be implemented using trigonometric techniques, the no-fit 

polygon represents a considerably more efficient solution. 

Whilst the generation of the no-fit polygon is academically challenging, it is a ‘tool’ and not a ‘solution’ and 

this is perhaps one of the reasons why there are many publications in the literature which state that the no-fit polygon 

is used but which provide relatively little or no details on its implementation.  In this paper we concentrate specifically 

on the no-fit polygon and provide an overview of the previous techniques that have been used for its creation.  

Furthermore, we describe and provide full implementation details for a new robust orbital approach that can cope with 

the traditional problem cases that many other approaches cannot handle.  Hopefully this will help in the further 

dissemination of the benefits of using the no-fit polygon (as opposed to traditional trigonometry based approaches) 

within both the industrial and the academic communities. 

2. The No-Fit Polygon – An Overview 

In this section we describe the functionality of the no-fit polygon and we compare it to the more traditional 

trigonometric based overlap and intersection tests.  We also give brief overviews of the many techniques that have 

been used to generate no-fit polygons within the previous literature. 

2.1  The No-Fit Polygon 

The first application of no-fit polygon techniques within the field of cutting and packing was presented by Art (1966), 

although the term “shape envelop” was used.  It was ten years later that the term “no-fit polygon” was introduced by 

Adamowicz and Albano who approached the irregular stock cutting problem by using no-fit polygons to pack shapes 

together using their minimum enclosing rectangles (Adamowicz and Albano, 1976).  The term “configuration space 

obstacle” is often used to denote the NFP within the field of engineering and robot motion planning but the term has 

also been used with respect to cutting and packing in (Cunninghame-Greene, 1989).  The “hodograph” is often used to 
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describe the no-fit polygon within the mathematics community (Stoyan and Ponomarenko, 1976; Scheithauer and 

Terno, 1993; Bennell, Dowsland and Dowsland, 2001).  The main function of the no-fit polygon is to describe the 

region in which two polygons intersect.  The following example gives an overview of the NFP construct. 

Given two polygons, A and B, the no-fit polygon can be found by tracing one shape around the boundary of 

another.  One of the polygons remains fixed in position and the other traverses around the fixed polygon’s edges 

whilst ensuring that the polygons always touch but never intersect.  Throughout this paper we adopt the convention of 

the first polygon being fixed and the second being the traversing/orbiting polygon.  Therefore, when polygon B traces 

around the fixed polygon A, the resulting no-fit polygon is denoted by NFPAB.  In order to create the NFPAB object we 

must choose a reference point from B which will be traced as B moves around A.  In our implementations we use the 

first vertex, within the shape vertex list, as the reference point (see Figure 1).  The reference point can be any arbitrary 

point providing it follows the movements of the orbiting polygon.  It is also important to maintain the relative position 

of the reference point with respect to polygon B as this is required when using the NFP to test for overlap. 

 
Figure 1.  The no-fit polygon of two shapes A and B 

 
 

 
Figure 2.  Using the no-fit polygon to test for intersection between polygons A and B 
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In order to test whether polygon B overlaps polygon A we use NFPAB and B’s reference point.  If polygon B is 

positioned so that its reference point is inside the polygon NFPAB then it overlaps with polygon A.  If the reference 

point is on the boundary of NFPAB then polygon B touches polygon A.  Finally, if the reference point is outside of 

NFPAB then polygons A and B do not overlap or touch (see figure 2).  The no-fit polygon is used within the following 

papers from the literature (Grinde and Calvalier, 1995; Ramkumar, 1996; Cheng and Rao, 1997; Dowsland, Dowsland 

and Bennell, 1998; Milenkovic, 1999; Gomes and Oliveira, 2002; Dowsland, Vaid and Dowsland, 2002). 

2.2  No-Fit Polygon vs. Standard Trigonometry Overlap Detection 

Although the no-fit polygon is an excellent tool for conducting intersection tests between pairs of polygons, it has not 

been widely applied for two-dimensional packing problems in both the literature and in real world manufacturing 

industries.  Undoubtedly this is due to the no-fit polygon’s complex implementation and the lack of available robust 

algorithms.  Instead, many intersection implementations use standard trigonometrical approaches which especially 

occur in the case of packing software for real-world applications where it is important that distributed software is able 

to handle all possible polygons without errors.  However, whilst both approaches have the same overall effect, use of 

the no-fit polygon can be several times quicker than even the most efficient trigonometrical routines.  For example, 

where we wish to attempt numerous iterations of the same layout problem, the pre-generation of no-fit polygons can 

significantly reduce the total computation time.  Over numerous iterations, trigonometric approaches are likely to 

repeatedly detect and resolve the same overlapping shapes in repeated orientations and positions.  Where a nesting 

overlap resolution approach requires the calculation of all intersection points between two intersecting shapes the 

benefits of a no-fit polygon approach are multiplied further as numerous intersection calculations are required for the 

full detection of collision when the no-fit polygon method is not used.  Therefore, by utilising no-fit polygons, we can 

reduce the overlap detection problem (which is a major factor in the computational overhead of the nesting process) to 

a significantly less expensive point inside polygon test (Dowsland, Vaid & Dowsland, 2002).  In addition to this, when 

utilising the overlap resolution technique used in Burke (Burke et al, 2004), where intersecting shapes are resolved 

through the repeated resolution of intersecting edges in the y-axis direction, by utilising the no-fit polygon the 

resolution technique is more efficient, resolving the y–axis overlap in one complete movement.  Furthermore, the no-

fit polygon would also allow for the overlap to be resolved in any direction by casting out a ray from the relevant 

reference point and finding the nearest intersection with the no-fit polygon boundary. In the following section, we 

compare the geometrical procedures that are required to detect and resolve the overlap between two polygons using, 

firstly, standard trigonometry and, secondly, using the NFP. Given a nesting method where we wish to detect all 



5 

points of intersection for polygons A and B (see figure 3), every edge is tested against every other edge leading to 42 

tests to determine intersection status (given that polygon A has 7 edges and polygon B has 6 edges).  Furthermore, if 

we find no intersection, in order to eliminate the possibility of the polygons intersecting through their vertices, or one 

polygon completely containing the other, we must perform a point inside test for all points on both shapes, requiring a 

further 13 tests and therefore, in the worse case, a total of 55 tests.  

 
Figure 3.  Intersection testing with the no-fit polygon 
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NFPAB then the shapes are neither touching nor colliding.  By calculating all of the no-fit polygons for all pairs of 

polygons, we can save considerable computation time when performing multiple iteration nesting. 

2.3  Approaches for No-Fit Polygon Construction 

Here we review the main techniques that have previously been used for construction of no-fit polygons within the 

literature.  For each method we give a brief overview of the approach and discuss any benefits and drawbacks that 

may occur from its usage. 

2.3.1   Convex Shapes 

The basic form of no-fit polygon generation occurs when both polygons are convex.  Given two convex shapes, A and 

B, the no-fit polygon is created by the following steps:  i) Orientate shape A anticlockwise and shape B clockwise (see 

figure 4a), ii) Translate all edges from A and B to a single point (see figure 4b), Concatenate these edges in 

anticlockwise order to yield the no-fit polygon (see figure 4c). 

 
Figure 4. No-fit polygon generation with convex shapes 
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There have been many different approaches to producing no-fit polygons from non-convex shapes.  These can be 
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1)   Decomposition 

The first approach is to decompose any non-convex shapes into sub-pieces that can be ‘managed’ more easily.  

However, decomposition usually results in several sub-pieces and therefore several no-fit polygons must be created.  

In order to conduct intersection testing, the no-fit polygons can remain decomposed or they can be recombined 

through union operations.  Where possible, a single no-fit polygon offers the fastest intersection computation times but 

will require additional calculations to recombine constituent parts.  This can be a computationally expensive and a 

difficult undertaking if several subparts are present and this may be further complicated if holes are present.  For 

example, Agarwal, Flato and Halperin (2002) conducted an extensive investigation into different decomposition and 

recombination operations with respect to constructing Minkowski sums of non-convex polygons.  They conclude that 

it is counterproductive to use optimal decompositions because the computation times to calculate them outweigh the 

benefits achieved during recombination.  The authors report that the recombination operations are the most costly and 

give example execution times that range from a few seconds for shapes involving a small amount of concavities and 

up to twenty minutes for highly irregular shapes.  Avnaim and Boissonat (1988) discuss a decomposition 

recombination approach based on linear segments.  These are used to produce parallelograms which are recombined to 

yield the NFP.  The authors provide a mathematical proof to show that the approach can handle the general case and 

further extend this to allow rotations.  The algorithm has a time complexity of O(m3n3 log mn). 

a)   Convex Pieces 

We have already discussed that no-fit polygon generation is trivial when convex shapes are involved.  If shapes with 

concavities can be divided into convex pieces, fast convex no-fit polygon generation techniques can be employed.  

The simplification of geometrical intersection through the decomposition of non-convex shapes to convex pieces was 

suggested and discussed in (Avnaim and Boissonnat, 1987) and (Cuninghame-Green, 1992).  The main difficulties 

with such an approach are the decomposition and recombination algorithms.  There are many well-known approaches 

that can be used for this including decompositions into triangular or convex pieces.  Seidal suggests a fast polygon 

triangulation algorithm which has complexity of an O(n log n) complexity (Seidal, 1991).  Further implementation 

details for triangulation can be found in (Amenta, 1997).  However, for our purposes, the triangulation approaches 

produce more sub-pieces than is necessary and will ultimately impact upon computation time within the generation 

process.  Unlike triangulation, which can be seen as a specialised cased of convex decomposition, generalised convex 

decomposition algorithms aim to represent polygons with as few convex pieces.  The two key approaches are 

suboptimal decompositions, which has an O(n) complexity (Hertel and Mehlhorn, 1983), and optimal decomposition 
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which has an O(n3) complexity (Chazelle and Dobkin, 1985).  Agarwal, Flato and Halperin (2002) state that it is 

generally more efficient to use suboptimal decompositions because of the computational overhead inherent with 

creating optimal decompositions but they also suggest that an alternative and possibly more efficient approach is to 

perform convex covering instead.  Once any irregular polygons have been decomposed into convex pieces, the no-fit 

polygon may be generated by passing each convex piece of shape B around each convex piece of shape A.  The 

disadvantage with this approach is that the no-fit polygons of the convex pieces may cross and care must be taken 

when recombining them to construct the no-fit polygon.  Particular difficulty occurs if the original shapes contain 

holes as it is unclear whether intersecting no-fit polygon subsections define holes or regions that can be discarded.   

b)   Star-Shaped Polygons 

Li and Milenkovic decompose shapes into convex and star-shaped polygons. A star-shaped polygon has the property 

that there exists at least one internal point, or ‘kernel point’, that can ‘see’ the entire boundary of the polygon. By 

extending the concavity edges and elimination of invisible regions it is evident that the star-shaped polygon has a 

region, Rkernel, that can be defined within which a kernel point can be placed to see the entire polygon boundary.  

Conversely, this is not the case with the non-star-shaped polygon because no region can be defined in which to place a 

kernel. Thus, star-shaped polygons are situated somewhere between convex and non-convex shapes in terms of 

generality. Li and Milenkovic state that star-shaped polygons are ‘closed’ under Minkowski sum operations and 

provide a proof that the Minkowski sum of two star-shaped polygons also yields a star-shaped polygon (Li and 

Milenkovic, 1995). The authors do not state whether they recombine the no-fit polygon regions into one no-fit 

polygon entity or whether they perform multiple no-fit polygon intersection tests during the layout generation stage. 

c)   Phi-Functions 

An alternative and promising approach is presented by Stoyan et al and is based on the use of “phi-functions” (Stoyan 

et al., 2001).  Phi-functions define mathematical intersection relationships between pairs of standard or “primary” 

objects such as rectangles, circles and convex polygons.  Although phi-functions are not strictly a no-fit polygon based 

approach, it is included because it has had very promising results.  The authors further develop their work to enable 

the definition of mathematical intersection relationships for non-convex polygons through the union, intersection and 

complement of primary objects (Stoyan et al., 2002).  The resultant intersection test between two shapes during layout 

generation is performed through comparisons of phi-functions between all pairs of the primary objects that define 

shape A and shape B.  Phi functions have a secondary benefit in that they are based on distance functions between 

primary objects and therefore can easily be used to find the distance between two complex objects. 
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2)    Minkowski Sums 

The no-fit polygon construct can be unified through the use of Minkowski sums (a form of vector addition) and was 

first suggested by (Stoyan and Ponomarenko, 1977).  The concept is as follows: given two arbitrary point sets, A and 

B, the Minkowski sum of A and B is defined by the following: A ⊕  B = {a + b: a ∈ A, b ∈ B} 

In order to produce no-fit polygons, we must use the Minkowski difference, A ⊕  −B.  This corresponds to two 

input polygons in opposing orientations and is easily shown through simple vector algebra (Bennell, Dowsland and 

Dowsland, 2001).  We can verify that this is the case using our simple convex only case (section 2.3.1) where we 

place shape A in its anticlockwise orientation and shape B in its clockwise orientation.  We can state that the method 

of Cuninghame-Green, involving convex shapes only, is also using the Minkowski difference in its most basic form.   

Whilst non-mathematical implementation details of such approaches are scarce, Ghosh and, subsequently, 

Bennell provide excellent explanations and implementation details for no-fit region calculation.  As such, we shall 

refer the reader to their contributions (Ghosh, 1991; Ghosh, 1993; Bennell, Dowsland and Dowsland, 2001).  The 

main drawbacks of the approach is that it only works providing that the concavities of the two shapes do not interfere 

or interlock (Ghosh, 1991; Ghosh, 1993).  Bennell, Dowsland and Dowsland (2001) state that Ghosh’s approach 

would cause a “cumbersome tangle of intersecting edges” which would be difficult to recombine to form the no-fit 

polygon.  They introduce a implementation that reduces the amount of ‘tangled edges’ and give implementation 

details of the process.  They also report fast generation times of around 0.3 seconds for each of five separate datasets 

from the literature.  However, they state that their approach cannot deal with internal holes as it is difficult to detect 

which of the internal no-fit polygon edges can be discarded and which form the internal no-fit regions. 

3)   Orbital Sliding Approach 

The orbital sliding approach is the main focus of this paper and involves using standard trigonometry to physically 

slide one polygon around another.  The no-fit polygon is defined by tracing the motion of a locus point of the sliding 

polygon when orbiting.  The first discussion and implementation of an orbiting approach for the generation of 

‘envelopes’ is detailed in Mahadevan’s Ph.D thesis (Mahadevan, 1984).  The key elements of Mahadevan’s approach 

are: calculation of touching vertices and edges, determination of the translation vector and calculation of the 

translation length.  The calculation of intersecting edges is performed using the notion of D-functions (Konopasek, 

1981).  Mahadevan modifies the D-function test to also calculate touching points which is a necessity for both 

Mahadevan’s algorithm and our new approach.  This information is then used to select a translation vector based on 

the touching edge.  The translation vector is then projected through each vertex of the orbiting shape and then the 
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intersecting edge testing is used to calculate the translation distance.  It is also important to project the translation 

vector in the reverse direction of the stationary polygon.  The orbiting shape is then translated along the translation 

vector by the smallest distance (from projection and intersection tests).  This ensures the two polygons never intersect 

but always touch.  The process continues until the orbiting polygon returns to its original starting position.  We will 

not describe Mahadevan’s approach in greater detail here because many of its features are also used within our new 

orbital approach (section 3) and, where applicable, we compare against Mahadevan’s approach and state the 

improvements within our new approach.  The major disadvantage with Mahadevan’s algorithm is that it cannot 

generate the full no-fit polygon for shapes involving holes or some concavities.  The problem occurs when the orbiting 

polygon can be placed inside a concavity of the stationary polygon but the concavity has a narrow entrance.  In this 

case, the orbiting polygon is too wide and will simply slide over the concavity.  In section 4 we show how our new 

orbital approach can generate no-fit polygons for all of the known degenerate cases. 

3. The New No-Fit Polygon Construction Algorithm 

We now describe our new approach for robust no-fit polygon generation through the use of orbital methods utilising 

standard trigonometrical techniques.  For the intersection calculations within our presented implementation, it is 

important to use a robust geometry library.  It is also beneficial to implement routines that are as fast and as close to 

optimal as possible in order to promote fast no-fit polygon generation and packing algorithms.  We have implemented 

such a library.  Although this can be very time-consuming and a difficult undertaking, a discussion of the required 

algorithms can be found within most standard geometry and computer graphics texts such as (O’Rourke, 1998) and 

several computational geometry forums on the internet.  For practitioners who do not wish to develop such a library, 

the geometry modules of the LEDA and CGAL libraries may provide better alternatives.  It is beyond the scope of this 

paper to discuss each geometry routine that is used throughout the implementation. 

3.1  Overview 

Our approach can be divided into two logical stages.  Section 3.2 describes the procedure for the first of these where 

one polygon slides around another to create the outer path of the no-fit polygon of the two shapes.  This part follows 

an approach that is logically similar to that of Mahadevan’s algorithm, although a modified implementation is 

proposed.  The second section introduces the notion and identification of starting positions that allow the algorithm to 

find the remaining paths of the no-fit polygon (see section 3.3).  These paths will be internal holes of the no-fit 

polygon (i.e. contained by the outer path) and are not found using Mahadevan’s algorithm alone.  For this section we 
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will assume that we have two anticlockwise oriented polygons, A and B, that exist somewhere within two-dimensional 

space and we are required to produce the no-fit polygon NFPAB (orbiting polygon B around polygon A).  The first 

operation that must be performed is to translate polygon B so that it is touching, but not intersecting, polygon A.  We 

maintain the same approach as used by Mahadevan whereby polygon B is translated so that its largest y-coordinate is 

placed at the lowest y-coordinate of the polygon, A (see figure 5).   

 
Figure 5.  Initial translation of the orbiting polygon to touch the stationary polygon 

 
Using these two vertices for alignment guarantees that A and B will be non-intersecting and touching.  The translation 

that results in polygon B touching polygon A is shown in the formula [1]: 

Trans B A   =   PtA(ymin)   –   PtB(ymax)  [1] 

In reality, any starting position may be used providing that polygons A and B are touching and non-intersecting.  The 

orbital approach can now commence to generate the outer path of the no-fit polygon in an anticlockwise direction. 

3.2  Orbiting / Sliding 

The main aim of the orbiting (or sliding) section of the algorithm is to detect the correct movements that B must make 

to traverse around A in order to return to its original position.  This is an iterative procedure with each translation step 

creating an edge of the no-fit polygon.  This can be further broken down into the following subparts which will be 

discussed in turn: detection of touching edges, creation of potential translation vectors, finding a feasible franslation, 

trimming the feasible translation and, finally, applying the feasible translation. 

3.2.1  Detection of Touching Edges 

The ability to correctly detect touching and intersecting edges is paramount to the success of our approach.  This is 

achieved by testing each edge of polygon A against each edge of polygon B.  Each pair of edges that touch (one from 

polygon A and one from polygon B) is stored along with the position of the touching vertex.  Figure 6 shows the 

resulting set of touching edge pairs.  This is in contrast to the approach of Mahadevan who performs calculations 

using all edges at a touching vertex. For example, in figure 6, Mahadevan would present edges a2, a3, b1 and b4 on 

the same diagram and, in our experience, this makes the required calculations longwinded and difficult to explain. 
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Figure 6.  Identification of touching edge pairs 

 

3.2.2  Creation of Potential Translation Vectors 

The vector with which polygon B must be translated to orbit polygon A must either be derived from an edge of 

polygon A or from polygon B depending on the situation.  Figure 7 shows an example of each case. 

 
Figure 7.  Translation vector: a) derived from edge a3, b) derived from edge b1 

 
Note that in the second case (figure 7b), because polygon B slides along one of its own edges, the translation vector is 

found by reversing the edge.  This is further examined through the relative movement of polygon A with respect to B.  

Polygon A is relatively moved along the edge b1.  In reality, polygon A must remain fixed and B must be translated 

and therefore, the translation vector is reversed in this situation.  We can obtain the set of potential translation vectors 

by using the touching edge pairs.  There are three possibilities: i) both edges touch at a vertex, ii) a vertex of orbiting 

edge touches the middle of the stationary edge, or iii) a vertex of the stationary edge touches the middle of the orbiting 

edge.  These cases are depicted in figure 8. 

 
Figure 8.  Touching edge-pair types 
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Each pair of touching edges yields one potential translation vector.  In case (ii), the translation vector is simply defined 

using the point at which the two edges touch and the stationary edge’s end vertex.  In case (iii), we use a similar 

process except we use the end vertex of the orbiting edge and we also reverse the vector direction.  Case (i) requires 

the correct identification of whether the potential translation vector is derived from the stationary or orbiting edge.  

This can be identified by the following set of rules based on the touching vertices and a test for whether the orbiting 

edge, b, is left or right of the stationary edge, a.  Table 1 shows the different possibilities and the edge from which a 

potential translation vector is derived under each circumstance. 

Stationary Orbiting

1 Start Start Left Orbiting Edge

2 Start Start Right Stationary Edge

3 Start End Left -

4 Start End Right Stationary Edge

5 End Start Left -

6 End Start Right Orbiting Edge

7 End End -

8 Parallel Either Edge

Touching Edge Vertex Relative Position of the 
Orbiting Edge to the 

Stationary Edge

Translation Vector             
Derived From

Case

 
Table 1.  Deriving the potential translation when both edges touch at vertices 

 
We shall now clarify why some potential translations can be eliminated in certain cases of the table (an ‘-‘ entry in the 

table indicates that no translation is derived).  Recall that when a translation is derived from an edge, the resultant 

vector is defined by touching point  end vertex (and then the vector is reversed for an orbiting edge).  This allows us 

to eliminate case 7 of the table because both the stationary and orbiting edges touch on the end vertices and this would 

yield a null translation vector.  In cases 3 and 4, the orbiting edge touches at its end vertex thus a translation cannot be 

derived from the orbiting edge.  In cases 5 and 6, the stationary edge cannot be used as it would produce a null vector.  

As an example, we show each of the cases using two polygons that touch at two separate places (see figure 9). 

1 (a3,b3) b3

2 (a1,b4) a1

3 (a3,b2) -
4 (a1,b3) a1

5 (a5,b4) -
6 (a2,b3) b3

7 (a2,b2) , (a5,b3) -

Translation Vector 
Derived FromCase Edges

 
Figure 9. Two polygons touching at two separate positions and vertex-vertex touch cases 

 
In cases 3 and 5, no translation can be derived because the edge of the orbiting polygon is to the left of the edge from 

the stationary polygon.  For example, edges a3 and b2 touch on their start and end vertices respectively.  As we 

produce a null translation using edge b2 (due to touching with the end vertex), the only possibility is to derive a 

A 
B a1 

a2 

a3 

a4 

a5 

b3 

b1

b2 

b4 



14 

translation vector from the stationary edge, a3.  However, edge b2 is left of edge a3 and, if this translation vector were 

used, edge b2 would slide along the inside of edge a3.  Therefore, the positional “left test” eliminates the translations 

whereby polygons would slide along the inside of an edge rather than the outside of the edge.  Where edges are 

parallel, either the stationary or the orbiting edge may be used. 

3.2.3  Finding a Feasible Translation Vector 

Once the potential translation vectors have been produced, we next select a translation vector that does not result in an 

immediate intersection.  For example, on figure 9 we have generated two potential translation vectors, a1 and -b3.  It 

can be seen that the orbiting polygon B must be translated using vector -b3 in order to move anticlockwise around 

polygon A.  If, instead, we were to translate polygon B along vector a1, this would result in an immediate intersection 

between edges a2 and b3 (and also a3 and b3).  Once again the set of touching edge-pairs, generated from section 3.2.1, 

contains all of the information needed to determine a feasible translation vector.  The process here is simplified due to 

our proposed representation of touching edges and involves taking each of the potential translation vectors in turn, 

identified in section 3.2.2, and placing them on the touching position at each touching edge-pair.  We can define 

positional relationships between the touching edges of the stationary and orbiting polygons based on the union of 

left/right regions that indicate whether a particular potential translation will be suitable for those edges.  For a potential 

translation vector to be identified as feasible, it must be suitable for every pair of touching edges.  Figure 10 shows 

some examples of touching edge-pairs and the angular direction at the touch point (given by the circular arcs) for 

which edge b can move without intersecting with edge a.   

 
Figure 10.  Identifying the feasible angular range of translations (indicated by an arc) 

 
For the sake of brevity, we have not listed all possibilities that can occur (the examples in figure 10 provide enough 

information to derive the omitted relationships).  In figure 9, we calculated two potential translation vectors, –b3 and 

a1, for two touching polygons.  Figure 11 demonstrates how the approach eliminates translation vector a1 (we have 

omitted the edge-pairs involving edge a1 for brevity but these will be feasible translations because the translation 

vector is also a1).   Once a potential translation fails on one such test, the translation is infeasible and it is eliminated.  

a a a a a a

b b b b b b

aright 
∪ 

bright 

aright 
∪ 

bleft 

aleft 
∪ 

bright 

aleft 
∪ 

bleft 

 
aright 

 

 
bleft 
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Figure 11.  Elimination of potential translation vector, a1 

 
At this stage we have found one (or more) feasible translation vectors.  Usually there will only be one translation 

vector but several may be present under the special circumstances that are illustrated in figure 12 (an actual screenshot 

taken from our implementation).  The centre of the orbiting square has been set as the reference point for clarity. 

 

 

 

 

 

 

Figure 12.  Two polygons involving exactly fitting ‘passageways’ 

This introduces another important aspect of our algorithm; we must maintain the edge that was used to generate the 

previous translation vector.  When several feasible translation vectors are present, we choose the edge that is nearest 

(in edge order) to the previous move.  Therefore, returning to figure 12, the square enters the passageway using edge 

a3 instead of sliding straight over the opening using edge a14.  Then, after sliding along into the centre of the stationary 

polygon, the square has four feasible translation vectors derived from edges a4, a7, a10 and a13.  However, the 

translation vector derived from edge a4 will be used because the edge that was used previously was a3.  This is another 

improvement that we have made to Mahadevan’s approach, significantly improving the generality of the approach. 

3.2.4  Trimming the Feasible Translation Vector 

The last step before we can translate polygon B is to trim the translation vector.  This is important because there may 

be other edges that can interfere with the translation of the orbiting polygon.  Figure 13a provides an example whereby 
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applying the entire translation vector results in the two shapes intersecting.  In order to prevent the orbiting polygon 

entering the body of the stationary polygon, the feasible translation, a7, must be trimmed to edge a1 (see figure 13b). 

 
Figure 13.  A translation vector that requires ‘trimming’ to avoid intersection 

 
In order to find the correct non-intersecting translation we project the translation vector at each of the vertices of 

polygon B and test it for intersection with all edges of polygon A.  This ensures that we correctly identify the vertices 

of polygon B that will cross into polygon A and reduce the translation distance accordingly using formula [2].   

New Translation   =   IntersectionPt  –  TranslationStartPt       [2] 

We must also project the translation vector back from all vertices of polygon A (by translating the end vertex of the 

translation vector onto each vertex) and perform intersection testing with all edges of polygon B to test if any will 

cross into polygon B.  This is depicted in figure 14 using the same example but a different orbiting polygon.    

 
Figure 14.  Trimming with projections from polygon A 

 
Once again, if there is an intersection, we can reduce the translation distance to reflect this using formula [3]. 

New Translation   =   TranslationEndPt  –  IntersectionPt     [3] 

Our approach is fundamentally the same as used by Mahadevan except that we trim the translation vector at the time 

of intersection whereas Mahadevan keeps the translation vector the same but stores the minimal intersection distance 

and trims once after all projections have been completed.  As our algorithm trims at every intersection, the translation 

vector becomes shorter throughout the testing process which can reduce the number of intersections that occur due to 

fast elimination tests through the use of bounding boxes which are much faster than standard line intersections.  The 

approach of Mahadevan may need to calculate several more full intersection tests because the entire translation vector 

is used at each projection and could potentially require more computation. 
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3.2.5  Applying the Feasible Translation Vector 

The final step is to append the trimmed translation vector to the end of the partial no-fit polygon created so far and 

polygon B is translated by the trimmed translation vector.  This will move the polygon to the next ‘decision’ point and 

the process can restart from the detection of touching edges (section 3.2.1).  The only additional check to this process 

is that we must perform a test to detect if the reference point of polygon B has returned to its initial starting position. 

3.3  Start Points 

In section 3.2, we identified an approach for the orbiting of one polygon around another using edge comparisons and 

edge sliding.  The overall effect of the approach is similar to the proposed algorithm of Mahadevan.  However, some 

improvements have been proposed that result in the procedure requiring less computation and which enable the 

approach to be explained more easily.  Therefore our approach thus far has some of the same limitations that previous 

orbital implementations have suffered such as the inability to generate complete no-fit polygons for shapes involving 

interlocking concavities, jigsaw pieces or holes (see section 4).  Figure 15a shows two polygons for which the sliding 

algorithm alone does not produce the complete no-fit polygon.  The polygons have concavities that can interlock with 

each other to create a further no-fit polygon region but this is never found because of the narrow entrance to the 

stationary polygon’s concavity (see figure 15b).  Another approach is needed to identify such possibilities. 

Figure 15.  Interlocking concavities: a) polygons, b) no-fit polygon using sliding alone, c) the complete no-fit polygon 
 
 

In this section we describe an approach based on the identification of feasible touching but non-intersecting start 

positions with which the previously described sliding technique can be employed to generate the remaining inner 

loops of the no-fit polygon construct.  For example, if polygon B can be placed in the location shown in figure 15c, 

then the sliding algorithm can be employed to generate the internal no-fit polygon region.  Feasible starting positions 

are found through a modification to the approach described in section 3.2 and once again the process involves sliding.  

However, we are not interested in sliding to trace the no-fit polygon but to resolve edge intersections whilst translating 

along a particular edge vector. In order to explain the process we will examine an example of finding the start 

positions along one edge of polygon A.  This process can then easily be reproduced for each edge of polygon A and 
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polygon B to create all feasible starting positions to allow polygon B to orbit around polygon A in order to create the 

entire no-fit polygon.  Given an edge, e, of polygon A, we can detect the potential starting positions of an orbiting 

polygon B along e.  The process involves translating polygon B such that each of its vertices, in turn, are aligned to 

the start vertex of e.  For each position we perform the following steps.  If the polygons do not intersect in this 

position, then this is noted as a feasible start position for the two polygons.  If polygon B intersects with polygon A 

then we must perform further testing and ultimately employ edge sliding to traverse along edge e until a non-

intersecting position is found or the end of the edge is reached.  In such an instance, the first test involves examining 

whether the two connected edges of polygon B (joined at the touching vertex) that are both right or parallel to the edge 

e.  If either of polygon B’s connected edges are left of e then they will translate on the inside of polygon A and can be 

eliminated immediately as they will never yield a feasible starting position when sliding along vector e. 

 
Figure 16.  Vertex alignment of polygon B to polygon A using edge a5: a) invalid alignment, b) valid alignment 

 
Figure 16a shows an example of where the connected edge pair, b3 and b4, are eliminated from sliding along a5 

because b4 is left of a5 (note that this will not be eliminated when using edge b4 of the polygon B and connected edges 

a4 and a5 of polygon A).  Figure 16b shows an example of where both connected edges, b1 and b2, are right of edge a5. 

Now, assuming both connected edges are right of edge e and polygons A and B intersect we can attempt to resolve the 

overlap by translating the orbiting polygon along the translation vector defined by e.  As with the previous section we 

can now employ trimming to this vector (the procedure is identical).  The resultant translation vector can then be 

applied to slide polygon B along edge e and then another intersection test is performed.  If the two polygons still 

intersect then the process repeats with the translation vector derived from the touching point to the end vertex of edge 

e.  If the intersection has been resolved then the reference point of polygon B is a potential start position.  If the 

entirety of edge e is traversed and there is still an intersection then no feasible starting position can be found along 

edge e and the aligned vertex / connected edges of polygon B.  The next vertex of polygon B is then considered and so 

on until all edge vertex possibilities have been examined.  Note it is also important to examine the edges of polygon B 
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with the vertices from polygon A but as this is an identical procedure, this will not be discussed.  Figure 17 shows this 

process on the example presented in figure 17b.  When aligned using a5 and the vertex connecting edges b1 and b2, the 

polygons are initially intersecting so we need to resolve the intersection along the vector derived from edge a5.   

 
Figure 17.  Start point generation process 

 
Figure 17a shows the trimming process and identification of the closest intersection point, Pt.  Polygon B is then 

translated by the trimmed translation vector.  The resulting position is shown in figure 17b.  The polygons are still 

intersecting so the procedure must repeat.  The translation vector is calculated from the touching point to the end 

vertex of edge a5 and is then trimmed as shown in figure 17c (only the important trim intersection is shown).  After 

applying this translation to polygon B, the polygons are no longer intersecting and therefore a feasible start point has 

been found and the standard orbital approach can be employed once more to generate the no-fit polygon loop.  A 

procedure that we include in our implementation is that we calculate the outer no-fit polygon loop using the approach 

in section 3.2 and then we apply the starting position procedure on the untraversed / unflagged edges from both 

polygon A and polygon B in turn.  During the process, as soon as a feasible start position is found, we calculate the 

inner loop of the no-fit polygon that is derived from it (flagging edges as they are traversed as before).  This ensures 

that the algorithm is fast because more edges become flagged as new no-fit polygon loops are produced, thus reducing 

the computational requirements for generating new feasible start positions. The procedure repeats until all edges have 

been seen or no more feasible start positions are available and the complete no-fit polygon is returned. 
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4. Problem Cases 

In this section we discuss each of the problem cases that cause difficulties with other methods and show why our 

approach is able to handle them without specific case-by-case implementations.  In each figure of this section we 

identify the stationary and orbiting polygons in dark and light grey shading respectively and we show the reference 

point of the orbiting polygon by a black dot.  This is used to trace the loops of the no-fit polygon (which we number).  

We present the data for these problem cases within the online companion for this paper. 

4.1  Interlocking Concavities 

The interlocking of concavities is a typical problem case for the previous orbital sliding approaches in the literature 

such as (Mahadevan, 1984).  Figure 18 shows a screenshot of our implementation where we generate the complete no-

fit polygon of identical shapes with one rotated through 180°.  The shapes in these orientations involve many different 

interactions of the concavities and, therefore, multiple feasible start points.  The no-fit polygon of these two shapes 

results in six loops within the no-fit polygon (one outer loop, 1, and five internal loops, 2-6). 

      
 Figure 18.  Multiple interlocking positions Figure 19.  Exact fit sliding through a “passageway” 
 

4.2  Exact Fit: Sliding 

The next case involves sliding through exactly fitting “passageways” which cannot be handled by either the 

Minkowski sum approach of (Bennell, Dowsland and Dowsland, 2001) or the orbital approach given in (Mahadevan, 

1984).  We propose an extension to Mahadevan’s algorithm that can deal with such problems through the maintenance 

of the previously traversed edge and, thus, enabling consecutive edges of the stationary polygon to be used in the next 

translation iteration (see Figure 19).  We previously discussed another example of this case in figure 12. 
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4.3  Exact Fit: Jigsaw Pieces 

The problem case involving jigsaw pieces (also called “lock-and-key”) that link exactly together is another form of the 

interlocking concavity case outlined in 4.1.  However, the distinguishing feature of jigsaw pieces is that they fit 

together with no movement, thus creating a singular feasible point within the no-fit polygon (rather than an internal 

loop in the interlocking concavity case).  In our approach, this position is found by the generation of feasible starting 

positions.  Of course, the algorithm will still try to slide the orbiting polygon along edges but, in this case, there is no 

feasible translation vector therefore distinguishing that the position is just a singular feasible point location (see figure 

20).  Most of the previous approaches have suffered from such degeneracy including: the Minkowski sum approach 

where no boundary exists to identify lock-and-key positions within the no-fit polygon, convex decomposition whereby 

it is not possible to find such positions through recombination alone and the sliding algorithm of Mahadevan which 

suffers from the same difficulties as with interlocking concavities (see section 4.1). 

  
Figure 20.  Jigsaw pieces: a) outer no-fit polygon loop, b) singular feasible internal position 

4.4  Holes 

There have been few approaches within the literature that can operate effectively on shapes containing holes.  This 

could be due to the difficulty of the generation process for no-fit polygons involving holes.  However, through the 

detection of feasible starting positions, the no-fit polygon can be generated easily and, more importantly, completely.  
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Figure 21.  No-fit polygon of two polygons, one of which involves multiple holes 

 
Figure 21 shows an example involving a shape with two holes and a shape that can be placed within several distinct 

regions of the holes.  The figure shows a mixture cases involving holes and interlocking concavities: loop 1 is the 

outer no-fit polygon loop, loops 2,3,5,6,7 are all hole cases, and loops 4 and 8 are cases whereby the concavity of the 

smaller orbiting shape interacts with the narrow gaps within the larger hole of the stationary shape.  Also, convex 

decompositions can result in a larger number of pieces and become more difficult with the introduction of holes.  

Therefore union or recombination is also compromised due to the larger number of intersecting sub-no-fit polygon 

elements that need to be untangled.  The phi-function approach of Stoyan could deal with many of the degeneracies 

through the resolution of primary objects.  However, this approach will ultimately impact on the efficiency of 

intersection testing as many separate tests must be performed (especially with very complex shapes).  Previous orbital 

approaches have only produced the outer no-fit polygon loop and Minkowski sum approaches can become difficult 

due to the untangling of edges.  The authors are unaware of any previous no-fit polygon generation methods that have 

specifically presented no-fit polygon constructs for shapes involving such degeneracies. 

5. Generation Times on the Benchmark Problems 

In order to demonstrate the speed and capabilities of our new no-fit polygon procedure, we report the generation times 

for 32 benchmark problems which we have gathered from the literature (this set of benchmarks is all of those of which 

we are aware).  These datasets can be found on the EURO Special Interest Group on Cutting and Packing (ESICUP) 

website1.  For each problem we report the total generation time and number of no-fit polygons generated per second 

(see table 2).  The “Logical Total Number of Shapes” (column E) is found by  E = B * D and the “Total Number of 
                                                 
1 http://www.apdio.pt/sicup 
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NFPs” (column F) is calculated by   F  =  E2  (i.e. we calculate the NFP for every logical shape against every other 

logical shape).  All experiments have been conducted on a Pentium 4 2GHz processor with 256MB RAM. 

Table 2 shows that the no-fit polygon constructs can be generated within reasonable time frames on most of the 

benchmark data.  Typically the algorithm can generate about 1000 no-fit polygons per second although this can vary 

drastically depending on the number of line segments in each problem.  For example, the two problems with the 

lowest no-fit polygons generated per second, “Swim” and “Profiles9”, involve pieces with many line segments (up to 

67) due to approximation of arcs and, further to this, “Profiles9” contains several shapes with holes (see figure 22). 
 

 
Figure 22.  A selection of pieces and no-fit polygons from the “Profiles 9” (letters) and “Swim” datasets 

A B C D E F G H

Dataset
Number of 
Different 
Shapes

Rotational 
Constraints

Number of 
Rotations 
per Shape

Logical Total 
Number of 

Shapes

Total Number 
of NFPs

Total 
Generation 

Time (s)

NFPs Per 
Second

Albano180 8 180 2 16 256 0.32 800
Albano90 8 90 4 32 1024 0.71 1442

Blasz1 7 180 2 14 196 0.21 933
Blasz2 4 90 4 16 256 0.19 1347
Dagli 10 90 4 40 1600 0.93 1720

Dighe1 16 90 4 64 4096 1.28 3200
Dighe2 10 90 4 40 1600 0.62 2581

Fu 12 90 4 48 2304 0.52 4431
Jakobs1 25 90 4 100 10000 5.57 1795
Jakobs2 25 90 4 100 10000 5.07 1972

Mao 9 90 4 36 1296 1.41 919
Marques 8 90 4 32 1024 0.79 1296

Poly1a 15 90 4 60 3600 1.37 2628
Poly2a 15 90 4 60 3600 1.37 2628
Poly3a 15 90 4 60 3600 1.37 2628
Poly4a 15 90 4 60 3600 1.37 2628
Poly5a 15 90 4 60 3600 1.37 2628
Poly2b 30 90 4 120 14400 7.54 1910
Poly3b 45 90 4 180 32400 27.14 1194
Poly4b 60 90 4 240 57600 68.45 841
Poly5b 75 90 4 300 90000 141.90 634
Shapes 4 90 4 16 256 0.38 674
Shapes0 4 0 1 4 16 0.11 145
Shapes1 4 180 2 8 64 0.19 337

Shirts 8 180 2 16 256 0.33 776
Swim 10 180 2 20 400 6.08 66

Trousers 17 180 2 34 1156 0.73 1584
Profiles6 9 90 4 36 1296 0.86 1507
Profiles7 9 90 4 36 1296 0.58 2234
Profiles8 9 90 4 36 1296 0.56 2314
Profiles9 16 90 4 64 4096 44.30 92
Profiles10 13 0 1 13 169 0.55 307  

Table 2.  No-fit polygon generation times for 32 datasets of the literature 
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The slowest overall generation times occur within the Poly4b and Poly5b problems and are simply due to the large 

number of no-fit polygons to generate.  Whilst the majority of the literature datasets do not contain any degenerate 

cases, the “Profiles6” and “Profiles9” datasets do contain several of the degenerate cases that we have identified (holes 

and interlocking cavities).  As mentioned in section 2.3.2, other reported generation times for available benchmark 

problems of the literature can be found in (Bennell, Dowsland and Dowsland, 2001).  Table 3 shows a comparison of 

the generation times of our new orbital approach to the Minkowski based approach of Bennell, Dowsland and 

Dowsland using a DEC Alpha 3000/400.  We set each problem to use 0° rotations for comparative purposes (polygons 

in their drawn orientations) as these were the rotational constraints used in (Bennell, Dowsland and Dowsland, 2001). 

Minkowski Approach 
(Bennell et al, 2002) [DEC 

Alpha 3000/400]

Orbital Approach 
(Presented)     [Pentium 4 

2GHz]

DS1 0.32 0.23
DS2 0.22 0.04

DS3 (Shirts) 0.23 0.17
DS4 (Shapes0) 0.38 0.11
DS5 (Blasz1) 0.36 0.13

Dataset                 
(0° rotation only)

Total Generation Times (seconds)

 
Table 3.  Comparison of generation times of the Minkowski approach of Bennell, Dowsland and Dowsland (2001) 

with the presented orbital approach on 5 literature datasets. 

Table 3 shows that the new approach generates the no-fit polygons quicker than the Minkowski sum approach for all 

of the five datasets.  Whilst this comparison is unfair due to the difference in computing power available to the two 

approaches, it does show that the approach proposed in this paper can generate no-fit polygons very quickly with 

execution times that are consistent with other published approaches.  

We have demonstrated that, for the problems taken from the literature (including several datasets from the 

textiles and metal cutting industries), we are able to quickly and robustly generate all of the no-fit polygons.  Whilst 

very large problems may require a few minutes to generate all of no-fit polygons, such as the Poly4b and Poly5b test 

problems, for repeated automatic nesting it is likely that we will more than recover this overhead by being able to use 

the faster no-fit polygon based intersection testing.  

6. Summary 

In this paper we have reviewed the main techniques that have been used for no-fit polygon generation within the 

literature and shown that it is an important construct that can be used for the development of faster automated packing 

algorithms as opposed to the traditional trigonometric based approaches.  A complete and robust implementation of 

the orbital method of the no-fit polygon has been presented.  This approach can deal with degenerate cases that the 
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previous methods cannot resolve easily.  Furthermore, we show that the execution times required to produce the no-fit 

polygons on the available benchmark problems from the literature are reasonable and that they are consistent with the 

approach of Bennell, Dowsland and Dowsland (2001).  As far as the authors are aware, not only is this the first time 

that a full implementation of an orbital no-fit polygon generation procedure has been proposed for publication within 

the literature but also the first time that such an approach has been rigorously investigated for robustness with the 

known degenerate cases and has provided computational results on such a wide range of existing benchmark data.   
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